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SUMMARY 

This paper describes the non-spherical free and forced oscillations of a gas bubble in a compressible liquid. 
Generally two different cases of oscillations are possible: spherically radial motion and surface oscillations. 
The deviation from spherical shape is assumed to be small and is given by a spherical harmonic. Included in 
the theoretical model are the effect of surface tension, the compressibility of the liquid and the gas. Stability 
and threshold conditions for the shape oscillations are given. 

1. Introduction 

The fundamental nature of  vibratory cavitation and underwater explosions is the transient 

growth and collapse of  individual gas bubbles in liquids. Recent investigations [1-7, 28, 29, 30] 

have shown that the influence of  the fluid compressibility can be very strong for the free [27] 

and forced radial oscillations of  a gas bubble in a liquid. The results of  the compressible theory 

are in very good agreement with the experimental data [3, 4, 7, 8]. If a linearized analysis of  

the spherical oscillations is carried out, the effect o f  sound radiation is found to be very modest 

except at high frequency. The large effect of  compressibility appears only in the non-linear re- 

gime. On physical reasoning one expects the effect of  compressibility on the non-spherical 

oscillations to be quite modest, because this motion would contribute multipole radiation, and 

not monopole radiation as in the spherical case and any large effect would only appear in a non- 

linear analysis, similar to the spherical case. Bubbles at rest or undergoing small-amplitude pul- 

sations tend to have a spherical shape, because of  surface tension. The spherical shape of  a bub- 

ble is unstable, however, if the amplitude of  the pulsation is sufficiently large. It is well known 

that shape instability occurs when the sound-pressure amplitude exceeds a threshold value that 

depends on the bubble radius and the acoustic frequency. The problem of  the stability of  a 

plane interface between two incompressible fluids of  different densities in accelerated motion 

has been solved by Taylor [9]. The corresponding problem for a nearly spherical interface has 

been discussed by Binnie [10], Plesset [11], Strasberg [12, 13], Birkhoff [15], Eller and Crum 

[16] and Hsieh et al. [17]. Numerical results of  the Plesset equations are given by Strube [18]. 

For a slightly viscous incompressible liquid the non-spherical bubble oscillations have been cal- 

culated by Prosperetti [19, 20], Francescutto et al. [21] and Ceschia [22]. Excellent photo- 

graphs of  surface waves are given by Kornfeld and Suvorov [23] and Hullin [24]. In all these 

studies of  non-spherical bubble dynamics the compressibility of  the liquid is neglected. Several 
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investigations have shown that for stronger radial bubble oscillations the mean damping para- 
meter is the fluid compressibility and not the viscosity effect, so that in this paper the com- 
pressibility of the liquid is taken into account for the mathematical model describing non- 
spherical bubble oscillations. Hsieh [31 ] has already discussed the effect of compressibility of 
the liquid on the non-spherical motion of gas bubbles. 

For the following investigations thermal and diffusion effects and the viscosity of the liquid 
are neglected. We consider a sphere of gas of initial radius a0 surrounded by an unbounded 
fluid initially at rest. First we calculate the velocity potential for the strictly spherical radial 

motion. Then we can add the potential for the distortion of the interface and we obtain the 

velocity potential for the whole system. 

2. Case of a strictly spherical interface 

The equations for conservation of mass and momentum in spherical coordinates are given by [25 ] 

1 ap au 2 
p a t  +~--r + r u = 0 ,  (1) 

au au 1 ap 
- 0 (2 )  

a t  +u--~-r + p ar  

where p is the density of the liquid, r is the radius, u the velocity of the fluid particles in the r- 
direction, p is the pressure in the liquid and t is the time. First we calculate the velocity poten- 
tial ¢ for the strictly spherical interface of the bubble. Hence, as long as liquid velocities are 
small compared to the velocity of sound in the liquid, we obtain from Eq. (1) and (2) the wave 

equation [7, 25] 

2 
- -C--2 q~tt + t~rr + -- t~r = 0 (3)  

r 

in which ¢ is the velocity potential and c is the constant sound speed of the liquid. It is very 
interesting that Taylor [14] has shown that for a flow produced by a uniformly expanding 
sphere, the agreement between the flow based on the wave equation and exact flow was excel- 
lent even for very large velocities of the sphere. 

For an incompressible fluid (c -~ oo) we obtain from (3) the Laplace equation. For the pres- 
sure difference inside and outside nearby the bubble surface we obtain 

2 o  
Pg - Pa = a (4) 

where pg is the gas pressure inside of the bubble, Pa is the pressure in the liquid nearby the bub- 
ble surface, o is the surface tension and a is the momentary radius of the spherical cavity. It is 
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assumed that the gas pressure inside the bubble is uniformly distributed. It should be noted that 

(4) is only valid for a strictly spherical interface (see Sec. 3). The gas inside the bubble is com- 
pressed according to a polytropic gas law. Furthermore the mass of  gas is assumed to be constant• 

Then with (4) for the pressure in the liquid on the bubble surface we write [2, 6, 8] 

( a--~l-3~ - 2.a +PASin(cot) (5) 
Pa = Pgo \ ao ] a 

in which Pgo, ao, K, PA and co denote respectively initial gas pressure, radius of  the bubble at 
rest (t = 0), polytropic exponent,  sound pressure amplitude and the angular frequency of the 

sound field. For the free bubble oscillation the last term on the right hand side of  (5) is zero. 

The initial gas pressure Pgo is calculated from (4) for t = 0 and a = a o, 

2o 
Pgo = PO + - -  • (6) 

a o 

A particular solution of  (3) for diverging waves in the r-direction is 

1 
c~ = -- F ( t  - ( r -  ao)/C ) (7) 

r 

where F is a function of the retarted (t - (r - ao)/C). With (7) and (3), Keller and Kolod- 

ner [7] have derived the following nonlinear second-order ordinary differential equation for the 
case of  a strictly spherical interface of  the bubble: 

• 3 (l 2 1 ~ ) _  ( i +  {l]tPa-P__._____~O 1 
a d ( 1 - a ) + - ~  ( 1 - - ~  c / \  [o ! 

p - - - - S - ,  = 0 

(8) 

A dot denotes a derivative with respect to time, Po is the density of  the liquid, Po is its initial 

pressure and & is the radial velocity of  the bubble surface. Now we can insert the pressure Pa 
(see (5)) into (8) and we obtain the differential equation 

) ( dt 3 (12 l Pgo a 1 2o 
ad 1 -  - + -  1 . . . . .  1 +(1 3K) + - - - -  

c 2 3 Po \ ao l Po a 

( + 1+  
Po 

1 + sin (cot) 
Po 

+ - -  cos (cot = 0 .  
c 

(9) 

A very similar equation is also obtained by Lastman and Wentzel [28] for a tension wave 

p f ( t )  = Ps exp ( - t / t o ) .  They obtained the following result [28] : 
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a i i (d-c)+ ~ a -~ { l - c  a 3 [(1 - 3~)~ +c]  
Po 

c 2o Po Psf(t) aPs dr(t) 
( c + 6 )  + ( ~ + c ) - -  + - -  - 0  (10) 

Oo a Po Po Po dt 

with k = (Po + 2a/ao)  " [(47r/3)a~] K" 

A comparison of  (10) with (9) shows that for the present paperpsf(t)=p A sin (co t). For an 
incompressible fluid (c ~ oo) we obtain from (9) the well-known incompressible RPNNP-model 

[2, 61 

1-3K PO PA Pa - PO 3 d2 Pgo a 2o 
- = - -  + sin (co t) - - -  (11 ) 

agt" + 2 Po \ ao I Po a Po Po Po 

It is very interesting that if we multiply eq. (11) with d/c and subtract from (9) we obtain Her- 

ring's equation for the first order in 6/c [6, 5, 35] : 

3 d2 4 d )  20 (1 a ) - - - ~ o  \-~-o! - 3 t ¢  c a-- 
~- ( 1 -  5 + po a \ 

E i ] Po PA aw 
+ n (cot) + - -  cos (cot) = 0. 

Po Po c 

(12) 

The initial conditions for (10) are given by 

a ( 0 ) = a m a  x ; ~ ( 0 ) = 0  (13a) 

for the free oscillation and 

a ( 0 ) = a o  ; d(0) = 0 (13b) 

for the forced oscillation. Once a(t) is known, F and F '  can be calculated [7] as 

F = - a  2 t ~ + -  + - -  ( P a - P o )  ' 
C /9 0 

(14) 

F '  = - a + (Pa - Po • 
Po 

(15) 

Then the velocity potential is given by 

F(t - ( r -  a°)/c) a2 dt a2 Ia'~-22 1 1 
- -  - -  + - -  + - -  ( P a - P O )  • ( 1 6 )  

4~= r r c - r Po 
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For c -~ oo we obtain from (14) the velocity potential for an incompressible liquid which has 

been used by several investigators. 

3. Case of  a non-spherical interface 

The origin of the coordinate system is taken at the center of the spherical interface. When the 

bubble is distorted from the spherical shape of instantaneous radius a to a surface with radius 

vector of magnitude r s we have 

r s = a + b  Yn (17) 

where a(t)  is the spherical interface radius vector, b(t)  is the amplitude vector of the surface 

disturbance and Yn is the spherical harmonic of order n. It is assumed that I b ( t ) I ' ~  a(t). The 

stability analysis given here will be limited to the first order in b. Then the fluid velocity at the 

interface in the radial direction is given by 

u =i" s =dr +b Yn, (18) 

because the difference between the normal component of the liquid velocity at the interface 

and the radial velocity u is of second order in b, so that we can neglect this difference. Now we 

introduce a potential which corresponds to a disturbance which decreases away from the inter- 

face in the outward direction, 

¢s=4~+¢n for r > r  s, (19) 

where q~s is the potential for the whole problem, ~b is the potential for the strictly spherical inter- 

face and ~b n is the potential of the surface disturbance. We have 

F ( t  - (r - ao)/C ) A (t - (r - ao)/C ) 
(~s - + Yn for r > r s. (20) 

r r / / + l  

F is known from (14) and the quantity A is determined by the following boundary conditions: 

= 6 + b  Yn =rs at r = r  s, (21) 
\ Or / r  s 

Pa - Po ( aq)s I 1 ( aCs ] 2 
Po - - \  at  / % - 2  \ O r  Jr s at r = r  s. (22) 

It may be noted that Pa is not identical with (5). For a perturbed sphere the sum of the curva- 
tures up to the first-order correction may be written as [25] 

1 1 2 ( n -  1 ) ( n + l )  
+ - - -  + b r~ (23) 

a 1 a 2 a a 2 
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where a~ and a2 are principal radii of curvature of the bubble surface. Instead of (5) we can 
write 

t a ] -3~  20 ( n -  1) (n + 1)o 
P a = P g ° ~ Z ]  a a = b Yn +P.4 sin(cot). (24) 

Substituting (20) into (21) we obtain 

( ~ b s  I 1 1 F '  n + l  1 
= - - T  F -  - - -  A Y n A '  Yn =d + b Y n (25) 

\ Or ]% r s rsC _ n + 2  crn+l  
g8 S 

in which the prime denotes a derivative with respect to the retarded time. Then from (22) we 
obtain 

1 P a - P o  1 F ,  1.._.~A, Y n _  .~ i.2s " 
t0 0 l" s l ,n  + 1 

$ 

The functions A and A' can be determined from (25) and (26), which yield 

(26) 

A = 2 a + l / c  {t2 + - - ( P a - P o )  - - d ( 1 - d / c )  , (27) 
n + l  Oo a 

A '  =a n+l - (z2 + - -  (Pa - Po) - 
Po a 

(28) 

It may be noted that it is possible with the help of (20), (27) and (28) to calculate the pressure 
distribution in the liquid for r > r s. Now we determine the equation of motion for the bubble 
boundary. Substituting (14) and (27) into (22) and with (15), (21) and (28) we obtain Eq. (9) 
to zero order in b. For the first order in b we obtain 

r j 
t n - 1  L - ( -~0) -a~& d ( n _ l ) (  1 _ a _ _ ' ) + ~  3KPgo +PAcoCOS(cot) + 

a c a C P o  a 

+ 
( n + l ) ( n -  1)(n+2) 

po a3 
o 1 - (n+5) c ( n + l ) ( n + 2 )  b +  3-a  1 -  ~ 

- - +  Pgo +PA sin ( c o t ) - P o  + 
c a C P o  

(29) 

+ 
(n - 1) ((n 2 - 1) + (n +3))  

po a2 
1t( ) o b +  1 -  b = 0 .  

This differential equation determines the stability of a small-amplitude distortion of a spherical 
interface. For an incompressible liquid (c -+ oo) we obtain from (9) the incompressible RPNNP- 
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model [2], [6] for a strictly spherical shape (see (12)). For an incompressible fluid (29) becomes 

' I  -(n ~ 1  
~+ 3  a b+(n 1) + l ) (n+2)  - - o - b = O ,  ( 3 0 )  

a Do a3 

a result already obtained by Plesset [11 ] and Birkhoff [15]. 

4. Stability of the non-spherical interface 

Equation (9) shows that, to first order in b, the shape distortion does not affect the radius. The 
equation of motion for the surface disturbance (29) is a second-order differential equation with 
periodic coefficients. The natural frequency of the strictly radial oscillations of the bubble in an 
incompressible liquid is given by Minnaert [26] 

1 ¢~o~ ( 2--~ t 2-~-o 1 co o = - -  K Po + - , 
a o 

(31) 

and for the surface modes [25] 

/ ( n -  1) (n + 1) (n +2)0 
(32) ("On -~ 3 

Po ao 

It may be noted that (31) and (32) are results obtained by means of the linear theory and (32) 
is only valid for a = constant, that is, pure surface waves. In absence of an ultrasonic field (co = 0) 
for a compressible fluid (29) becomes 

t ( n -  1) 3K pgo(a/ao)-3~ . . . .  d (n 1) a+ (n+l)(n-1)(n+2) o 
a c a 2 Po (1-a /e )  Po a3 (1 a/e) 

~ a n ( n + 3 ) 1  t { a (1 1/6(n+5)a/c) d x b +  3 -  
c (n + 1)(n +2) c ( 1 - a / c )  c( l -d /c)  

(n 1)(Pgo(a/ao)-3~:-po) (n 1) ( (n2-1)+(n+3) )  [, 
+ + o b +b '=0.  (33) 

ca Po ( 1  - ~/c) c ( 1  - a/c) po a2 ! 

For a bubble of constant radius a o, eq. (33) reduces to the equation for a damped harmonic 
oscillator. The natural frequency is given by (32) and the damping constant is 

( n - l )  
d -  ~ (n 2 + n + 4 )  o. (34) 

2 c a o Po 
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For the first order in 6/c equation (29) becomes 

t ( '  b +  3-6 a 1 -  ~ ( n  1) - -  
a" t~ ( n - l )  a [ [ a ~-3K 

+ - -  /D_ / - - /  
c aao0 cV ° a01 

) (n-1)((n2 1)+(n+3)) d t t (i 
+ P A  sin (cot)--po + - -  o / ~ +  - - - -  ( n - l )  

[oa2 d c a 

( n - l )  d /  / a ]-3K PACOa 
a2 Po c t--3KPgot-~o} + - - c o s ( c o t ) d  ! 

(35) 

(n + 1 ) ( n -  1)(n +2) [ d 
o ~ l + -  

Po a3 c (n+l ) (n  +2) b = 0 .  

Now we introduce the new variable g defined as 

b=gexp ( -1 /2  ffoH(t*)dt* ) (36) 

where H(t) is the coefficient of/) in (35). Then with (9) we obtain (35) in the more suitable 
form 

~-G( t )  g = 0  (37) 

where G (t) is defined as 

G (t) = (n + 1/2) -a'a ( 1 +3/4 1 - - 2 / 3 ( n - 1 )  6 
2 n + l  c -a -S- c 

(n + 1 ) ( n -  1)(n +2) ( 
PO a3 0 1 + 

2 (n-- 1) 2 (n+2) " 

- 1 / 2 - -  - ( ) n-  2 d - 3 K P g o  + ~ c o s ( c o t )  
a2 Po c 6 

(38) 

n ) 
4 - - -  Pgo +PA sin (cot) . 

a2 P0 c 

For an incompressible liquid (38) becomes 

( 1)8"  3~ 2 ( n ,  1)(n 1)(n , 2 )  
G( t )=  n +  - + - -  - o (39) a 4a z Po a3 

which is the well-known function G (t) given by Plesset [ 11 ] and Eller et al. [ 16]. Using a mean 
polytropic exponent ¢ = 4/3, Eq. (38) becomes for the free oscillation (co = 0)" 
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1 a (1 n - 1  6 )  362 ( 2 _~) 
- + - -  1 -  ( n - l )  G(t )=(n  + ~ )  a 2n + l c 4a z 

(n + 1)(n 1)(n +2) 

a3 Po 

2-(n-1)Z(n+2) 6 ) 
o 1 + 2 ~ - n + - ~  7 1 ) ( n  +2) c 

(40) 

4 

- -  P O  - -  " a2 Po c Pgo a2 Po c 

Equation (37) is ttill's equation [36] which is characteristic of  parametric resonances. By means 
of  Floquet's theory [36] the general solution of (37) may be written as 

g (t) = C 1 e ut a (t) + C2 e - m / 3  (t) (41) 

in which a (t) and 13 (t) are periodic functions of  t and # is the characteristic exponent. The pe- 

riodic solution is asymptotically stable if the real parts of  - o  +_/.t are negative, where 2 o is the 

constant term in H(t)  (Eq. (35)). The solution of  (37) is unstable if one of  the real parts of  

- o  +/~ is positive. When PA/Po is small compared with unity, the strictly radial oscillation will 

be approximately simply harmonic. A linearized calculation of  Eq. (9) gives with (29) the Ma- 

thieu equation for the first order in PA/Po" This equation, given in [33], is characteristic of  

parametric resonances. The results show an influence of the fluid compressibility on the sta- 

bility of  the surface waves [33]. Furthermore a comparison of  the results with Hsieh's incom- 

pressible threshold values [32] is given in [33]. In [34] it is shown that the theory with compres- 

sibility is in very good agreement with the experimental data of  Hullin [24]. 

In the present paper we have used the wave equation and as a result we obtain two indepen- 

dent differential equations for the bubble oscillations. A quantitative comparison of (35) with 

Eq. (26) of  Hsieh [31 ] is not possible because the wave nature of  the solution ~bniS suppressed 

by Hsieh's approximation. Neglecting the wave nature of  Cn then from Hsieh's Eq. (26) we ob- 

tain with 

~ (a ~6)" (a ~6) ~] 
P = Po - Po ÷ - -  r 2 r 4 ' 

(42) 

given by Keller and Kolodner [7], the 'incompressible' result given by Eq. (30), but the func- 

tions a, 6, d are different in our theory. These functions are given by the solution of (9) in the 
compressible theory. 
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